Ab iy
NACA TM 1408

6S6L

Borren ¥ e ¢

0fhhhTO

SRR

WN ‘gav) AUYHEIT HD3L

NATIONAL ADVISORY COMMITTEE
FOR AE_RQNAUTICS

L ———
L T T

TECHNICAL MEMORANDUM 1408

THE PRINCIPLES OF TURBULENT HEAT TRANSFER

By H. Reichardt

Translation

‘‘Die Grundlagen des Turbulenten Warmeiiberganges.’*Archiv £. die
gesamte Warmetechnik, no. 6/7, 1951. o

—

Washington

September 1957 ‘E\ o
MO

TEC 3.-.3 S4L L'BRARY

FL 2811

l( -

SeRAIAlE - S Sy m—— 2 = o T =R et —— . - R, .

N——_—t e hn . — e



3871

rCK~1

y

TECH LIBRARY KA

L muumumumm =

NACA TM 1408

NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS
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THE PRINCIPLES OF TURBULENT HEAT TRANSFER*

By H. Reichardt

1. INTRODUCTION

The literature on turbulent heat transfer has in the course of years
atiained a considerable volume. Since this very complicated problem has
not as yet found e complete solution, further studies in this field msy
be expected. The heat engineer must therefore accommodate himself to a
constantly increassing number of theories and formulas. Since the theo-
ries generally start from hypothetical assumptions, and since they con-
tain true and false assertions, verified knowledge and pure suppositions
often belng intermingled in & manner difficult to tell them apart; the

specialist has difficulty in forming a correct evaluatlon of the indi-
vidual studies. e

The need therefore arises for a presentation of the problem of tur-
bulent heat transfer which is not initially bound by hypothetical as-~
sumptions and in which the already known and that which is still unin-
vestigated can be clearly distinguished from each other. Such =a
presentation will be given in the present treatment. .

The following brief remarks may be made with regard to the develop-
ment of the theory of local heat transfer.l The first to recognize
the intimaste relstion between heat transfer and flow resilstance was
0. Reynolds (ref. 17). The considerations of Reynolds hold, however,
only for fluids with special properties (according to present termln-
ology, they are fluids whose Prandtl number is 1).

¥ '"Die Grundlagen des Turbulenten Warmelbergenges.''Archiv f. die
gessmte Warmetechnik, no. 6/7, 1951, pp. 129-142.

lThis is taken to mean the direction of investigation which has for
its object the derivation of the law of heat transfer from local flow
processes. In contrast to this is the semiempirical method of similar-
ity considerations as developed by W. Nusselt. This model investigation _
dispenses with the knowledge of the individual processes. However, for
this reason it is in the position to supply simple practical formulas
even in complicated cases. -
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The first practical useful formula for turbulent heat transfer was
derived in 1910 by L. Prandtl (ref. 12). Prandtl, like Reynolds, started
from the assumption that heat and momentum are transferred by the same
turbulence mechanism. For simplifying the computation, the friction
layer was divided into two sections: the turbulent boundary layer itself,
and a thin layer close to the wall, whose flow was assumed as completely
laminar.

The Prandtl formule was found quite relisble for the representation
of heat transfer of flulds with smell Prandtl numbers. On the other
hand, it is impossible to represent the measured heat-transfer coeffi-
cients of fluids with high Prandtl numbers by the Prandtl formula (a
correction i1s assumed which is adjusted to the experimental data).

The reason for this discrepancy for high Prandtl numbers lies in
the too greatly idealized flow relations in the friction layer. Actually
there 1s, of course, no completely turbulent boundery layer and also no
completely laminar well layer, but a continuous transition from the tur-
bulent flow to the viscous flow in the immediste neighborhood of the
wall.

By dividing the friction layer into three sections (namely, a tur-
bulent region, & laminar-turbulent transition zone, and a laminar wall
laeyer), as was done by Th. v. Kérmén (ref. 7) and H. Refchardt (ref. 14),
a considerable lmprovement in the theory could therefore be attained.
There still remained, however, certain contradictions which resulted
from the conceptlion of a completely leminar layer at the wall.

In order to remove these discrepancies, bhe author, in a later pa-
per (ref. 15), assumed an entirely continuous decrease of the turbulent
exchenge to zerc near the wall. The results of this computation are
contained 1n the present paper. In sddition, still more general formu-
las are given that form the basis for a later investigation of the effect
of the temperature dependence of the constants of the material on the
heat transfer. Also considered in this paper is the turbulent hest
transfer for extremely low Prandtl numbers . 2

2. DERIVATION OF GENERAL FORMULAS
(a) Definitions end Assumed Expressions

The considerations will be restricted to those cases for which no
unsteady changes of temperature occur at the wall to which the heat (or
cold) is transferred from the flow. The wall is furthermore assumed as
smooth.

2At the suggestion of Mr. B. Koch.

148¢
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If the temperature of the wall is constant or its spatial chenges
are only slight, the heat flow and momentum flow at each point x have
practically the same direction as y (or -y) perpendicular to the wall.

The transfer of the momentum and heat is, on the one hand, effected
through the moleculsr motion, and on the other hand, through turbulent
exchange. The parts determined by molecular transfer will be denoted by
the subscript m and those produced by turbulence denoted by the
subscript t. For the flow densities of the momentum < and the heat
q we therefore write

T =Ty t T = Tl tTe/Ty) .(l)
Q= ag + 9y = ol + agfag) (2)
The following equations apply for the individusl partial fioﬁgg

Ty = u dufdy (3)

T = Moldu/dy), (3a)

ap = A 4T/dy (4)

ao = Mp(dT/ay) g (42)

and

Ty = A du/dy o (9)

9t = cphy dT/dy | (6)

Through these formulas the coefficient of viscosity p and of heat
conduction A, as well as the exchange magnitudes3 for the momentum A
and for the heat Aqg, are defined (u and T denoting, respectively,
the time meen value of‘the flow velocity and the temperature at the dis-~
tance y from the wallj ¢ 1is the specific heat).

The subscript O vrefers to the wall. Since in ‘the immedlate neighé
borhood of the wall only molecular transfers are possible, 9 1is identi-
cal with Ctm)o and qq is identical with (qm)o, while Qrt)o and (qt)o

do not exist.

3The exchange magnitude A, can be denoted as the turbulent friction
coefficient, the magnitude cphAgq as the turbulent heat-transfer
coefficient.
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The following equations are obtained from equations (5) and (3)
and from equations (6) and (4), respectively:

Tofim = Al (7)

At/dy = Pr¥ wpfiy = Pe¥ AL /u (8)
wvhere Pr¥ = Pr Aq/AT denotes the "generalized Prandtl number™ (ref.
14). Further, from equations (2) and (8) there is obtained

‘n L | (9)

—

q 1 4+ Pr¥* Ag/p _

In order to be able to represent the temperature distribution and
the heat transfer as functions of the flow magnitudes, still another re-
lation is required that conhects the dimensionless heat flow q/qo with

the dimensionless momentum flow 1/%0. Since these two flows do not

deviate strongly from each other in the neighborhood of the wallf(where
the main part of the heat transfer occurs) - at the wall itself we ac-
tually have 't/ro = q/qo = 1 - the following.expression_suggests itself:

o/ = (L + kK)t/rg _ (10)

This equation defines a magnitude k which is small in the neighborhood
of the wall and may therefore, to a first epproximation, be neglected.

The expression (10) was found to give reliable values for computa-
tions involving medium and high Prandtl numbers (refs. 14-and 15). Tt
can, however, as will appear below, be successfully employed also for
s?all Prandtl numbers (for which k is no longer small as compared with
). -

From the above definitions and assumed expressions there will now
be derived the required equations for the temperature distribution and
the heat transfer. The flow magnitudes AT/h, Pr¥*, and 'f/to are here
to be considered as "given magnitudes.” In order to assure the general
validity of the formulae to be derived, no special assumptions in regard
to the flow magnitudes will be introduced in this section.

(p) Formulas for Temperature Distribution

From equations (2), (4), (4a), and (8) there follows

L 38T} -y 4T * 1
o F), = r Z - e ac/e) (11)

T8
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It is of ddvantage to introduce a dimensionless temperature difference

T - Tq

: -‘..1‘ .a = @

-

which is referred to the maximum temperature difference @ at the dis-
tance y =r (hence, 0 <4 <1 for O < y/r-< 1). For the temperature

dd )
gradient 5157;7, there is obtained from-éhuation (11)

ad =( ad ) Ao afao (12)
d(y/x) dfy/r)/og N 1 + Pr* Ag/u
If equation (10) is used, there is further obtained from the above
a9 v/ )‘O (1 + Ir/'ro

This equation represents the dimensionless temperature as a function
of the dimensionless distance from the wall y/r. The factor of propor-

dd
tionality'(aT§757)o 1s obtained from the condition that for y/r =1

we have 4§ = 1.

A first spproximation of ¥ 1is obtained by setting k equal to
zero, A equal to Ay, end Aq equal to A.. Under the integral there

then appear only the maegnitudes < [ftq, AT/p, and Pr, considered as ini-
tially given.

For computing a second approximation of ¥, an equation is reguired
for the heat flow appearing in the numerator of equation (13). This
equation is obtained from the continuity condition for the heat in the
case under consideratlon. For example, in the case of the fully devel-
oped flows in & pipe or in a plane rectangular channel, the following
relations hold: '

\ " " -
% (1 - %) =1 - -bqa(l - %)d(y/r) J; ﬁw(l - %)d(Y/r)

0
(pipe) (14)
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y/* 1
=1 - do d(y/f}{]\ d¢ a(y/r) (channel) (15)
0

0

where ¢ = u/U (ref. 14, p. 316).

Substituted here will be the value of. ¥ of the first approximation
of equation (13). The approximation of g/q,, thereby obtained, ylelds
a sufficiently accurate computation of the temperature distribution and
of the heat transfer. .

Formula (13) is particularly adapted for computations with small
Prandtl numbers. TFor high Prandtl numbers for which the integrand be-
comes very small at even small distances y/f, it is more convenient to
represent the temperature (at least as a first step) as a function of
the veloelty.

For such representation there is required the veiocity as a function
of the distance from the wall. This relation is to be obtained from
equations (1), (3}, (3a), and (7):

% uo(%)o = q g—‘; (1 + Ag/u) . | (16)

After introducing a dimensionless velocity ¢ = u/U, which is referred

to the meximum velocity at the edge of the boundary layer (at the dis-
tgnce y/f), the following equation 1s obtained for the velocity gradient:

dg '(dcp) Mo /o (17)

d(y/r) dy [r o K1 + Az /u
Combining equations (12) and (17) and employing equations (10) yield
¢
_(as Procpy (1 + Ag/u) (2 + X)
o =(% ae (18)
®/o Prg cp 1+ Pr¥ Ag/u

The proportionality factor (d4/de)q 1s obtained from the condition thet

for ¢ =1 we likewise have 4 = 1. As regards the practical carrying
out of the computations, the procedure with equation (18) is exactly the
seme as with equation (13)(see sbove).

For the particular case Pr¥ = 1, equation (18) to a first approxi-
mation gives the equality of 4 and o.

%,

TIQC
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(¢) Formulas for Heat Transfer

It has become customary to express the heat transfer by dimension-
less parameters. Generally used is the so-called Nusselt number, which
is defined by the formula

g - : ;
Nu = X%%E‘ - (29)

u

where d denotes a characteristic length, (for example, the diameter of
a pipe) and ATy  is the temperature difference between the wall and a

so-called mean flow temperature,

£
= f ATudf
fum 5

which refers to the quantity of heat f flowling through the flpw cross
section ( = % udf).

Since in the present paper all temperature differences are referred
to the maximum temperature difference @ at the distence y =r, it is
convenient to introduce a dimensionless temperature difference,

3y = AT, /0

Setting further d = 2r and qg = Xo(dT/dy)o, there follows from equa-
tion (19) -

Nus,, = 2(5-3-‘/3;)0 (20)

("7")5;131- follows from equation (13) for 4 = y/r = 1. The following
0

formula is then obtained for the Nusselt number:

Nud, = /f o (& + kv /o d(y/r) (21)

N T + Prehg/u

This formule holds for an arbitrary boundary-layer flow. In the
cage of laminar flow, A, = O, so that the denominator of the integrand

is equal to 1. For turbulent flow also, this denominator can at
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least be set approximetely equal to 1 if the Prandtl nunber is extremely
low and At/ﬁ is not too large (small Re number). The quantities gq/qq

and k are neturally different for the lamlnar flow than for the turbu-
lent flow for vanishing Pr¥*aAg¢/u (fig. 5).

The applicability of formula (21) is problematical, however, since
the variation of the heat flow q/qo, for the case under conslderation,
must be known; here again a knowledge of the temperature distxibution
is required. Practically, therefore, the determination of Nué is
based on the somewhat inconvenient computation of the temperature dis-
tribution which was presented in a formal menner in the preceding

section.

In order to be able to compute the heat transfer at the wall di-
rectly, a formula is therefore required in which only known or easily
determinsble magnitudes appear. Such a formula could be obtained through
a transformation of equation (21) if it were possible to introduce the
factor Pr¥* into the numerator of the integrand. This, however, is un-
fortunately impossible, because Pr¥* must be considered as & function
of the distance from the wall through the magnitude Aq/At contained in

it. 8till another formule for Nu will therefore be derived in which
the desired Factor Pr* appears in the numerator of the integrand.

c
For this purpose, equation (12) is multiplied by EE— o 4 X
Do

substituting equation (10) and integrating, there is then obtained
y/x

MoPr¥ (_l + k}'&'/‘t_
cszif (d—d%)o ugro T + Pr¥ayg /ﬁ a(y/r) (22)

For 9 = y/f = 1 this is a determining equation for the temperature gra-

dd
dient (g§7;)o to be substituted in equation (20). Furthermore, using

the notation?

N .
Agq - c
=) L Eﬁ; ad (23)

3
Cphq
4considered here is the mean value 3 oy d% for the total-
0]
0

temperature range O < ¢ < 1.

T/86
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yields

) |
¥*
Nud,, = Z(%)m Prg/ L = F:PJ;ZZX “70 d(y/r) (218)

This equation, in spite of its different form, agrees in content with
equation (21); if Aq/AT is considered as & constent, equation (21a)

transforms directly into equation (21).

The required transformetion can now be made in equation (21s) by
making the following substitution:

Pr¥ 1 Pr¥ - 1

T+ pr¥ig/u 1+ Agu T Pr¥ac/u) (L + Ag/n) (22)
Making use of equetion (17) and setting®
1 1
VI

yields, from equation (21a),

1
*
Nud = 2(%%)m Pr0<d;?;>o 1 +\Jﬁ é;§}¥;¥%%%% + g (26)
0

The form of this equation mey further be improved by collecting
factors together. Since

Nud,, _ qpU (27)
2 COL I N2

5For not too smell dilstances from the wall for not too small Pr

numbers 1 << At/ < Pr¥A./u, the integrand of equation (20} becomes ap-

proximately equal to k. Since in the immediate neighborhood of the
wall, or emell values of o, k = 0 and the integrand thereby vanishes,
the latter can be replaced by k practically for the entire region of

1
the friction layer (hence, the approximation formuls e =\[\ kde).
.o
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it is convenient to introduce a special heat-transfer parsmeter. A fur-

ther question to be considered here, however, is whether the new dimen-
sionless parameter is to be formed with u® or with U. -

The employment of U has the advantage that a good connectioh is .
made with older formulas. There will therefore be defined a "generalized

heat-transfer coefficient" o¥ through the equation

[

a0

¥ o= ———
ponOQU

(28)

T.8¢

whereby the heat flow at the wall is referred to the mﬁximum value of
the temperature difference and of the velocity in the boundary layer.

In place of equation (28) we can also write .

(%)

Nud,,0,,

ot = m————
PrORe

m*=_}_(é*_’)
Pro \ /g

or

(282)

(28b)

The expression Nu/(Pr Re) is frequently used in technical literature.
Since ¥, and ¢, lie in the neighborhood of 1 (figs. 7 and 9), o¥ 1is

of the same order of magnitude as Nu/(Pr Re).

Using equation (28) gives, from equation (26),

1 .
g\ (u¥\2 (pr* - 1)4
w*::(jfglJGﬁ;»/<l +~J; 1 + Prthy ﬁ + s)

(29)

This formula differs from equation (21), among other respects, in
that here 1/(1 + Pr*A./u) = qy/a 1s integrated over ¢, whereas in

equation (21) the corresponding integration is made over y/r. Since

q
ao

and, on the other hand, decreases with.the distance from the
a(y/r)
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wall - for logarithmic wvelocity distribution ETQ%_T is proportional to
v/r

1/y - it follows that the integrand of equation (29) decreases at a con-
siderably greater rate with distence from the wall, than the correspond-
ing integrand of formula (21)

For this reason, in using formule (29) only the relations in the
immediste neighborhood of the wall need be known 1f the Prandtl number
is not too small. Tt 1s, therefore, a particular advantage of formula
(29) that the knowledge of the results of the universal wall friction
law, in general, is sufficient for its application. A further advantage "
is that formula (31) for Pr¥ = 1 becomes particularly simple.

1 s
The magnitude € =\J‘ kd® occurring in formula (29) is only &
O : .
small magnitude with regard to the main region of application of this
formula (medium and high Prandtl numbers). Hence, in spite of the ex~
isting gaps in our knowledge, the e-term can accurately be computed if
the flow is sufficiently well known. For the case of the fully developed
flows in & pipe and in a plané rectangular channel, ¢ has been deter-
mined by the author for various Pr and Re numbers (these values are
given in fig. 8).

1
Since the integrand k of the expression ¢ =\[‘ kdp differs ap-
' 0
preciably from zero only for the parts of the boundary layer that are at
a large distance from the wall, the individuality of the friction layer
under consideration is expressed precisely in the &€-term. As may be
seen from the smallness of the €-values, the individuality of the flow
in turbulent heat transger plays only a small part if the Pr and Re num-
bers are not too small.

1 !
SThe term & =\J~ kdp depends on the ratio (Q/QQ)/QT/To) (see eq.
0

(10)). This ratio is to & large extent determined by the boundary con-
ditions at the wall (dq/dy)q, or (dt/dy)g. Tn the case of pipe flow,

(q/qo)/(T/TO), and, therefore, k and ¢, is relatively large, since on
account of the boundary conditions (dt/dy)o < O and (dq/dy)g > O the

distributions g/qy end T/t deviate relstively widely. In the case
of the plane channel flow, g/qy and t/ty no (Continued on next page.)
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The principal problem of the turbulent heat transfer lies in the
1
integral expression {Pr¥ - 1) d¢ of formula (29). It is there-
0 l+PI'*A¢/|J. _
fore justifisble to introduce a special notation for this expression.
It would be of advantage if the factor (Pr+ - 1) could first be taken
outside the Ilntegral. Because of the local varisbllity of Aq/Ax- and
of the temperature dependent Pr, this unfortunately cannot, in general,
be done.

Accordingly, (Pr¥ - 1) can be compensated only under the integral
sign, and for this purpose it will be divided by the factor (Prg - 1),
vhere Prg denotes a mean value of the Prandtl number for the boundary

layer near the wall. With regard to a later application of the universal
wall friction law (see below) it 1s convenient, in addition, to replace
the velocity ¢ by the universal velocity u/u*, wvhere . u¥% = 1/70/00

and is the so-called shear stress velgcity. The following magnitude b
will therefore be defined ss follows:'?

U/u*
(pr* - 1)/(Prg -
T + Prs Ju

1) a(ufu*) (30)
0

When this expression is used, equation (31) is obtained from equation (29):
2
e (ag/a) (*/0)
T + (Prg - L)o(u*/0) + ¢
longer differ so greatly, since in this case (dt/dy)y < O and

(dq/dy)o = 0. Hence, the e-values for the channel are smeller then the,
corresponding values for the pipe, as may be seen from figure 8.

(31)

In the flow at the flat plate, the distributions of q/qo and
'r/ro coincide approximately over the greater part of the ¢-region, be-

cause here we have (dt/dy)o = (dq/dy)o. From this it follows that the
e-valueg for the case of the plate are still considerably smaller than
the corresponding values of the plane channel flow. Hence, a general
neglect of the e-term for the flow along the plate should be permissible.

7aThis megnitude, which in previous papers was denoted by &, has
been redenoted by b in order to avoid confusion with the notation pre-
scribed by the standard regulations (DIN 1341) for thermel diffusibility
o.

TL8¢

L 3
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In this representation of the turbulent heat transfer, the basic form of
the old Prandtl equation (see eq. (41)) is expressed clearly.’?P

In order to obtein this customary form of the representation, the
heat-transfer coefficient o¥ would be formed with the maximum velocity
U (see eq. (28)). There is still the possibility, however, of referring
the heat-transfer coefficient to the shear-stress velocity u¥*, hence,
of forming & dimensionless qo/(pocpo®u*) (as was previously indicated).

We shall, therefore, consider briefly this heat-transfer coefficient.

Since the identity relation
dg Nud

. o
= 32)
pocpo®u*' 2Prony (

holds, we may write

———
ZPrO'qr

(33)

QJQ

in place of equation (28). With the aid of formulas (31) and (33), the
Musgelt number can be directly determined without computing the tempera-
ture -distribution. The practical application possibility of these for-
mulas is, however, connected with the condition that the product Pr Ny

does not exceed a certain limiting value (more details on this are given
in the section on the problem of the heat-conducting leyer.

The validity of the formulas derived in the present section is de-~
pendent only on the single assumption that the heat flow and the momentum
flow have spproximately the same directlon at right angles to the wall.
This assumption 1s practically satisfied in all setups for which dis-

continuous changes of the wall temperature are avoided. @ 77—

In order to apply the general formulas, specific assumptidns must
in addition be made on the magnitudes Aq/AT, Ar/u, and 'r/ko, considered

as "given". This will be done in the following section.

Tory previous papers there is found in place of (u*/U)z the so-
called resistance coefficient £, which i1s connec%ed with u*/U by the
following equation: (u*/U)Z = To/(pUZ) = 0.125 9.
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3. INTRODUCTION OF SPECIAL ASSUMPTIONS

(8) Ratio of Exchange Magnitudes Aq/AT

Up to the year 1932, in which Fage and Palkner (fef. 5) observed in

the wake of a heated cylinder the various possibilities of the propaga- -

tion of heat and momentum, the general idea hes been held that the tur-
bulence mechanism for the momentum traensport and for the heat transport
are identical. The tests carried out by Fage and Faelkner at the insti-
gation of Taylor showed, however, that the heat is more strongly propa-
gated than the momentum. Thils result supported the so-called vorticity
transfer theory of Taylor (ref. 19), in which different mechanisms are
postulated for the mass or heat transport and for the momentum
propagation.

The stronger propagating sbility of heat as compered with the mo-
mentum transport was alsc confirmed later in free jets. According to
the investigastions so far available, the ratio of the two exchange meg-
nitudes in free turbulence is given by Aq/A; ~ 2. .

These results had as yet no effect on the theory of heat transfer
in turbulent friction layers. In this connection, there were considered
the velocity and temperature measurements of F. Elies in a turbulent
airstream along a heated plate (ref. 3, 1930). From these tests a far
reaching congruence was obtained of the temperature and velocity pro-
files in friction layers. This result was looked upon as & conflrma-
tion of the previously held conception of the identity between momen-
tum exchange and heat transport.

This conclusion from the measurement results of Elias was, however,
in error, as was shown by the author in the year 1940. TFrom the agree-
ment in the dimensionless ¢ and & profiles (or from (dd/de)g = 1),

the agreement of Aq and Ag holds only under the assumption that

Pr = 1. In the tests of Elias, who used ailr as the flow medium, Pr was
approximaetely 0.72. For this Prandtl number and for (db/dw)o = 1, it
follows from equation (18), however, that Ag/At = 1/0.72 = 1.40, that
is, a value considerably greater than 1.

Tests of Lorenz and Friedrichs (ref. 9), who measured the distri-
butions of the velocity and temperature of sn air gtream in a heated
pipe, likewise led to a similar result. (Here the author obtained the
value Aq/A, ~ 1.5from the experimentally found value (d$/de)p = 0.97.)

These tests show, therefore, that the heat exchange in friction
layers is also greater than the momentum exchange. The ratio Aq/AT -~ 2

Ti8S
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observed in free turbulence is, however, nhot attained in friction layers.
For this case we apparently have

1< (Aq/AT)m < hyfAp <2 (34)
This 1is supported by the following considerations:

The fact that (Aq/AT)m in friction layers is smaller than in free

turbulence permits concluding that the lowering of thls ratio is & con-

sequence of the effect of the wall. Such an effect is naturally strong-
er in the immediate neighborhood of the wall than at a point at a lerge

distance from the wall. If, therefore, the ratioc of the exchenge magni-
tudes is lowered through the effect of a wall, it follows that Aq[AT

decreases with decreasing distance from the wall (or 1ncreases with in-.
creasing distence from the wall). -

The value of the magnitude that Aq/A apparently approaches at a

lerge distance from the wall is 2, which is observed in free turbulence.
On the minimum value of Aq/qu in the immediate neighborhood of the

wall, no experimental observaetions are as yet available for this region;
therefore, a& hypothesis must be assumed. The most probable assumption

with regard to the neighborhood of the wall would be that only & single
exchange mechenism holds at the wall, at which, therefore, (Aq/At)o = 1.

This leads us back to the old hypothesis of the equality of the exchange
mechanisms, but with the restriction that this identity of heat exchange
and momentum exchange is assumed only for the immediate neighborhood of

the wall. e

There will now be considered the consequences that follow from this
hypothesis. The magnitude Ag/At -appears in equations (31) and (30),

where it is contained in the magnitude Pr¥* = Aq/AT Pr. Equation (30)

will be considered first. Under the assumption of an explicit wall friec~
tion law (for large Pr and Re numbers), the integrand of equation (30)
exists only for the immediate neighborhood of the wall, for which there
is to be set Ag = Atr. In equation (30}, therefore, Pr¥ can be replaced
by Pr. This is of great use in the further considerations.

The factor (Aq/A1)m, appearing in the numerator of expression (31),

is represented by equation (23). This formula may be simplified by set-
ting approximately cp = c¢pp (on account of the weak temperature depend-
ence of the specific heats, this simplification should always be permis-
sible). In plaece of equation (23) we can, therefore, write approximately

1
A
AT i‘l dd = A'l: m (23a)

HI%
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The factor (Aq/AT)m, therefore, represents a mean value of the ratio

of the exchange magnitudes over the entire region of-the friction layer.
This mean value is to be formed directly over ¢ or indirectly over y/r;
the variable y/r is introduced becsuse Ag/Ar does not depend directly

on 93, but must be regarded as a function of y/r (or of nry/r). (For a
preassigned Reynolds number, Ny = ru*/§ 1s & constant, as will be seen
later.)

Since the varistion of %%!y/r) is as yet unknown, only statements

of a general cheracter can be made at first with regard to the mean value
of this ratio. For example, from equation (23) we may derive the result
that the condition (34) is satisfied if Aq A, has the limiting value 1

at the wall and the value 2 at the edge of the friction layer.

A further result is that the Prandtl number plays a part since %
and dé/a(y/f) depend on this number. There may first be considered the
relations for a large Pr where the temperature as is known is sufficient-
1y well balanced over the flow croses section (fig. 4). The temperature
gradlent is, therefore, approximately zero over the crogs section. In
the layer near the wall, however, d8/d(y/r) reaches considerable values.
On account of the small thickness of this layer, however, Aq/At- mey be

treated as a constant, and according to the assumption may be set equal
to 1. There follows, therefore, from equation (23a)

(Aq/AT)m + 1 for Pr—+ =

The value (Aq/AT)m thus attains the assumed minimum value at high

Prandtl numbers. On the other hand, from equation (23a) it is seen that
ag this mean value deviates more strongly from 1 the sharper the temper-
ature profile at relatively large distances from the wall where Aq/AT

approaches the assumed maximum value 2. According to our hypothesis,
therefore, the smaller the Prandtl.number, the greater the values of

(Aq/Ar)m to be expected.

An explanation of the questions raised here, also in particular the
question of the effect of the Reynolds number on (Aq/AThn, can be pro-
vided only by experiment. Of the test results thus far avallable, the
measurements of the temperature and velocity distributions undoubtedly
favor the previously presented view on the effect of the wall on the
ratio of the exchange magnitudes. -

TR
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Under the assumption that in the denominastor of equation (18) we
can get Pr¥ = Pr .and with account taken of a new determination of ¢
(ref. 15), there follows both from the test results of Elias on the flat
plate and from the results of Lorenz and Friedriche (ref. 9) in the pipe
according to equation (18):

(Ag/Ag), = 1.3 for Pra= 0.72

According to the gbove considerations, this mean value, oun account of
the relatively small Prandtl number of the air, appears plausible as re-
gards its order of magnitude.

(b} Ratio of Friction Coefficients Ay /u

If we disregard the region of the boundary lasyer near the wall, the
ratio of the friction coefficients Ar/u is an individual function of

the distance from the wall for the case under considersation.

For the fully developed flows through pipes and channels, AT/u nmay
be represented approximately by the following function (ref. 16):

2% 0.5 + (2/n)2]ft - (2/m)E (35)

My

where z/f =1 - y/r is the distance from the axls of the pipe or chan-
nel (AT/p must be symmetrical with respect to the axis), and % 1is the

universal constant known from the mixing-length theory8 which has sn ap-
proximate value of 0.4. The effect of Reynolds number is expressed
through the factor qp = ru*ﬁ;. The function (35) is plotted in fig-
ure 1.

As may be deduced from formula (35) or seen from figure 1, Ar/(unp)

increases near the wall approximetely linearly with the distance from
the wall with the slope S

A/ (ung)
S =

On sccount of 7, = ru*A , it follows that for A /u

AT/p. = X7 (36)

83ece T.. Prandtl: Fuhrer durch die Stromungslehre. Braunschweig,
1949, pp. 118-119.



18 NACA T 1408

Near the wall, therefore, AT/M is determined by the dimensionless

distance from the wall 7 = yu*/v, and the distance y/r no longer ap-
pears. It should be borne in mind, however, that formula (36) holds
only for the "fully turbulent region"; that is, where Am/“ is suffi-

ciently large. The turbulent exchange vanishes, however, not only at
n = 0, but is actually already very small at a certain distance 7.

With regard to these relations in the immediaste nelghborhood of the
wall, the author has set up the following expression9 (ref. 15):

Ar/u = x[n - ny Tang(n/n,)] (37)

where 1, 1s a measure for the thickness of the viscous wall layer.

The corresponding curve is ghown in figure 2 for the values of the con-
stants x = 0.4 and 17, = 11, derived from flow measurements. The dis-

tance for which Ar/“ =11s n = n] = 10.8 (thus approximately
ﬂ]_ fad nn)'

Substituting expression (37) into the relation obtained from ex-
pression (17)

du/fu* _ T/TO
dn 1+ AT/ﬁ (38)

there is obtained for T/%olo the universal velocity dlstribution u/h*,

which is lilkewlse represented in figure 2. As masy be seen from the po-
gition of the plotted test points of the author (ref. 15), this computed
velocity variatlion is experimentelly confirmed at least for not too small
n-values (for very small n-distances the experiments are too inaccurate
to serve as & test of the theory).

For extreme n-values equation (37) goes over into the following
funetion:

Agfu = x(n - ny) (for 7 >> np) (378)
Arfu = (f3n2)n>  (for q << ny) (370)

Equation (37a) differs from (36) only in that the surface of the wall ap-
pears displaced toward the fluid by the thickness 1nn of the viscous
layer.
OWhere Teng X = & - 7%
eX + e~X

101n the neighborhood of the wall where only the n-distance (and not
y/r) is in question, we can set < = 1Q.

TL8%



BREATA
NACA Technical Note 4067
By Richard R. Heldenfels and Touls F. Vosteen

Avgust 1957

Page T: Equation (10) should be corrected as follows:

2 \? 2 \° 2, A2 2
o f a°f £

Ih:ﬂ 2] &+ 2 +2p-—~-6 2-———af2+2(1-u)
ax° ay° e ¥yf ox 3y




3871

CK-3 back

NACA T 1408 - --19

Since from equation (36) or (37a) there follows the well-known loge-
rithmic velocity profile (44), which was always observed for large 7,
the expression (37) corresponds to the experimental data for these values
of 7.

With regard to the variation of Ar/p for small 17, only supposi-
tions can be made. The turbulent longitudinal oscillations wu' are to &
first approximation proportional to the distance 1. From this the re-
sult mey be derived, for a two-dimensional oscillatory motion, with the
aid of the continuity condition, that the transverse oscillations v' are
proportional to qz. Since T = eu'v', it follows from this considera-
tion, if u' and v' are correlated, that A, ~n°.1% The expression

(37) should, therefore, be physically questionable also with regard to
its variation for small 1 (eq. (37b)).

In the application of equation (37), however, at least for very high
Prandtl numbers, heat-transfer coefflcients that were too high were com-
puted (see more detailed discussion, sec. 5). From this it follows that
the expression (37) for very small n-distances gives too high values of
Ar/u. Probsbly the assumed correlation of the longitudinal and trans-
verse fluctuations does not exist in the ilmmediate neighborhood of the
well, and the power series for Ag/u first begins with a term of the
fifth degree. The variation of A¢/ﬁ for the region 1n < 6 should,
therefore, be corrected and written -—-

(Ap/u)y = 2.7 + 10721 (39)

From 17 > 9 on the original variation according to expression (37) is
maintaeined (see table I). In figure 2 the corrected variation of At/u

is shown by the dotted curve.

This change of Ax/u has as a consequence & velocity profille (shown
dotted) which hardly differs from the original profile (the deviation is
at any rate considerably smeller than the scatter region of the test
points). Although the chenge made in Ap/u for very small n-values
hardly has any hydrodynamic effect, the thermal effect of this correction
at high Prandtl numbers is quite considerable, as will be seen from the
considerations in section 5.%*

1lThe third power of n 1is the lowest power that can be considered.
The expressions of K. Elser (ref. 4) snd R. G. Deissler (ref. 2) which
contradict it camnot, therefore, be corrected for the immediate neighbor-
hood of the wall (here they give exchange values that are too high).

*Remark made during the proof correction: . -

In further investigations a new expression (Continued on next page.)
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(c) Computation of Temperature Distributions and Nusselt Numbers

The formulas glven above served for the computation of the tempera-
ture profiles of turbulent flow in & pipe. This computetion was made on
the basis of equetion (18) for different Prandtl numbers Pr (between O
and 1000), which were locally invariable and for the Reynolds number
Re = 3 x 10%* (or 17, = 800). For all Prandtl numbers there was thus as-
sumed a definite velocity profile ¢, namely, the profile of the fully
developed flow for which Thpo = 1 - y/r.l The constants of the mate-
rial Pr and cp were assumed as constant.

The magnitude A1/p occurring in equation (18) was determined for

n < 6 from equation (39), for n < 30 from equation (37), and for

n > 50 from equation (35). The temperature distributions of the first
approximation (k = 0) determined by graphical integration served for the
computation of the first approximations of q/ according to equation
(14). These distributions of the heat flux gq/dg, simllarly obtained

by grephlcal integratlon, are plotted in figure 5.13_

a/q

»®
From q/qp there is obtained 1 + k = i—:—§7;,'and with the aid of

this relation the d-profiles can be computed to a second approximation.
These second approximations of ¥, which shonld not deviate much from
the exact solutions, are plotted in figures 3 and 4. _

By the same numerical spproximation procedure, there was also com-
puted the temperature distribution of the laminar flow with the aid of
equation (13)(the parabolic velocity profile was assumed here). The
profile obtained in this manner, shown dotted in figure 4, does not ap-
preciably differ from that of L. Graetz (ref. 6) and W. Nusselt (ref. 11)
computed by an exact method.

A /u = xnp{n/ny - Teng(n/ny) - 1/3 Teng®(n/ny)] (39a)

was found to give good results for x = 0.4 and 1, = 7.15. The dis-

tance from the wall for which AT/u =1 1is here found to be 171 = 10.7.
For very small n-values expression (39a) goes over asymptotically into

A/u = 0.2 xqn(n/nn)® = 3x107°7° | (390)

12The numerical values of ¢ (y/r) for different Re numbers are
given in reference 15. .- -

137he heat flux first incresses with y/r because the cross section
2n(r-y)Ax, through which the radial heat flows, decreases more strongly
with y/r than the radial heat flow itself.

iL8e
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With the temperature distributions there were simultaneously ob-
ds
dy/r
ing to formule (20) are equal to 0.5 Nud,. Also 9, is obtained from
the temperature computation (fig. 9). Teble 2 gives the values of Nuéu,
3,, and Nu, and in figure 6 log Nu 1s plotted as a function of log Pr.

As may be seen from this curve, the Nusselt number, with decressing

Prandtl number, asympotically spproaches 1ts 1limiting value for Pr = O,
which is indfcated by a horizontal line (this value is sbout 5.22). The
dotted line below it corresponds to the value Nu = 3.77 of the laminar
flow (according to the exact computation of Graetz and Nusselt, Nu = 3.66).

tained alsoc the tempereture gradients at the wall » which accord-

Further, with the aid of equation (13) the Nusselt numbers were
computed for wvanishing Pr for variocus Re numbers (table 3}. The dif-
ferences in the Nusselt numbers are conditioned only by the difference
in the velocity profiles.*¥

4. THE PROBLEM OF HEAT-CONDUCTING LAYER

As regards the computation of b according to equation (30}, funda-
mental difficulties arise through the fact that the Prandtl number (par-
ticularly for viscous fluids) depends on the temperature which greatly
varies precisely in the neighborhood of the well. Tt is thus necessary
to compute with a Prandtl number Pr#% that depends on the distance q
even if it is assumed that A; and Ay are identical.

Here we shall not, however, enter further into these complicated
questions. The basic asgumption of the complicated theory for variable
"eonstants™ of the material is the solution of equation (30) for un-
changing values of these constants. In what follows, this case will now
be considered. '

*¥\3dded remark during proof correction:

At the conclusion of the sgbove investigations a paper by R. N. Lyon
appesred on the heat transfer of liquid metals (ref. 20). ILyon computed
the heat transfer on the basis of continuity considerations, the assump-
tion, among others, being made that the temperature gradient in the flow
direction dT/dx is independent of the distance from the wall. The de-
rived formila is epplied to the reglon of smell Prandil numbers, which
are characteristic of liquid metals. The Nu values of Lyon's theory
are larger throughout then the corresponding values of the present study.
For example, for the viscous flow, Lyon computes the value Nu = 4.36,
whereas in the above computation the value 3.77 was obtained (and the
exact value is 3.66). The heat-transfer coefficilents obtained by Lyon
are, on the average, smaller than his theoretical values.



22 ' NACA TM 1408

Under the simplifying assumption that Prg = Pr¥ = const, equation
(30) with account taken of equation (9) goes over into

Ufu* U/u*
dufu*
1+Pr A fu
0 1/ 0

b = D gufut (308)

A rough approximation for b 1s obtained by starting from the earlier
customery divigion of the friction layer into a "laminar" wall layer and
a "fully turbulent" principal layer. In the laminar layer, which extends
up to the distance ~ng, AT/u = 0, whereas in the turbulent region

(n > mp) we have A /u—+ «. In this idealization the integrand of equa-

tion (30a)} is 1 for the laminar layer and O for the turbulent region.
There is therefore obtained from equation (30a)

b = ua/ﬁ* = ¢BU/U* (41)

where @g = ua/U 1s the dimensionless flow velocity at the bounding
edge of the laminar layer.

If this expression for b 1is substituted in equation (31), Aq/AT
set equal to 1, and the €-term neglected, there is obtained

*o __ (/u)
o S (T (Prandtl equation) (41)

This, according to its physical content, is the old equation of L.
Prandtl (ref. 12) for the turbulent heat transfer.

A better approximation for b is obtalned by dividing the friction
layer into three zones: +the viscous layer at the wall, the laminar-
turbulent transition reglon, and the fully turbulent reglon, already
discussed in the introduction (ref. 14). We shall not, however, repeat
the discussion here, but in whet follows we shall apply expressions (37)
and (39), which represent AT/u as & continuous functlon of the dlstance
n. In actuality, there exists no completely laminar layer, some turbu-
lent exchange always exists even in the' lmmedlate neighborhood of the
wall. This exchange, hydrodynemically considered, may be very small;
but this does not mean that the minimum exchange hes only & slight ef-
fect on the heat transfer. ’

At high Prandtl numbers, in spite of "practically” wviscous flow in
the immediate neighborhood of the wall, there takes place a predominantly
turbulent heat transfer, as may be deduced from equation (8). If, for
example, we substitute A_/u = 0.01 and Pr* = 1000 in this equation,

T.8C
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there is obtained qt/qm = 10. In this case, therefore, the turbulent

heat transfer is ten times as large as the moleculer heat transfer, al-
though the turbulent exchange AT. is negligibly small as compared with

the viscosity p. From this example it is seen what errors are possible
if the turbulent exchange in the immediate neighborhood of the wall is
set exactly equal to zero.

This state of affairs mekes 1t appear adviseble to differentiate
between a "predominantly viscous layer" and & "predominantly heat con-
ducting layer". The viscosity is predominant in the region near the
wall O< 7 < 1y 1if the distance 177 1s defined by the condition that

Ty end 7, are equal there. On the other hand, the heat conduction is
predominant in the region 0< 7 < n, 1f the distence 1, is charac-
terized by the fact that here qi = gp, or Pr¥A./u = L (see eq. (8)).
The defining equations for =n; and 1y are therefore

-A;—‘ (ny) =1 (42)

% (ng) = 1/er* (63)

From these equations it follows that the layer thicknesses L and
n, are equal only for Pr¥ = 1, and that (AT/H)Z: and, therefore, n,

itself, decreases with increasing Prandtl number. At very high Prandtl
numbers mno lies deep within the predominantly viscous region near the

wall. But with decreasing Prandtl number, the np-boundary is displaced

far*into the predominantly turbulent region.14 At extremely low Prandtl
numbers, the heat conduction exceeds the turbulent heat transfer in the
entire region of the friction layer.

For the numerical determination of the magnitude b according to
equaetion (30a), it is important to know at which point yé/r the limit
ng lies, so that it can then be decided which function for AT/u to
gubstitute in equation (302). Since yz/f = nz/ﬁr, yz/f depends on 1,
or on the Re number.

14If, in addition, the law for the wall friction holds In this re-
glon, equation (43) may with the aid of equation (37a) be transformed into

1
N2 = xpp**t o (438)

This equation holds, however, only for sufficiently high Reynolds numbers.
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Universal velues of. .b, that is, not influenced by the Re number but
determined only by the Prandtl number, are obtained 1if yz/r is so small

(smeller than 0.05) that within the limits of the heat conducting wall
layer AT/u or u/u* depends practically only on 1n. For very small

Prandtl numbers, for which 7o according to equation (43) 1s very large,

this condition can be satisfied, however, only for very large 1, val-
ues or extremely high Reynolds numbers. '

This universal b was now computed for different Prandtl numbers,
with application of formula (37), which represents A¢/u as a function

only of 7. This function serves to determine qm/q = l/(l + Pr Ar/“)5
an/a was plotted, however, not against 1 but asgainst u/u¥ (fig. 10).

By graphical integration, b = LI‘%? du/u*' was then determined. These

values of b are presented in table 4 and plotted In figure 11 as a
function of 1log Pr.

Before discussing the result of this computetion, a& more detailed
consideration will be given to figure 10, in which the qm/q curves are

shown. In this figure is also drawn & dotted horizontal line
qm/q = 1/2. Where this line intersects the qm/ﬁ curves of the individ-

ual Prandtl lines, we therefore have g = q/? or agp = g4. These

polnts of intersection therefore characterize the respective limits of
the reglon near the wall with predominant heat conduction. The absclsgsas
of the intersection points represent the velocity uz/u* at the bounding

edge of the heat conducting layer for the individual Prandtl numbers. As
may he seen, uz/u* increases with decreasing Pr.

For large values of 1n for which the logarithmic velocity law
ufu® =.% in q + const (44)

holds, qm/d may be computed in a simple fashion. From equations (SOa):
(36), and (44) there follows:

4y /a = 0.5 + 0.5 Tanggt(% - -ﬁ‘%s)] (45)

This qm/q distribution, holding for very high Re numbers and small
Prandtl num'bers,15 lies symmetrical to the point (qm/§==0.5; u/d*::uz/d*),

5For example, for Pr = 0.0L we have up/u¥ = 19.4 (teble 4). For
this value there follows from equation (43a) or (Continued on next page.)

TIAA
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as may also be seen from figure 10. Hence, for large Re and small Pr

Ufu*
Om # 5 U2
b = == =
= du/u - (46)
0 .

From this it follows further, if equation (44) is applied to uz/u*,
equation (43a) (footnote 14) used for mnp, and the empirical values
X = 0.4, const = 5.5 and 1n, = 11 are substituted: .

b= up/u¥® = 5.75 log (11 + 2.5/Pr) + 5.5 (Pr < 0.1) (47)

This formule shows that for very small Prandtl numbers, uz/u* or b is

approximately a linear functign of -log Pr. This is also se¢n from fig-
ure 11.

For medium and smell Prandtl numbers, the relations are more com-
plicateds The qm/q distribution no longer lies symmetrical to the

point considered, and a certain difference arises between b and uz/u*.

This difference is not large, however, (as 1s seen from table 4 and fig;
11) so/ﬁagt, for high Prandtl numbers also, we may set approximately
bsugu.

Since for small u/u* values u/u¥* = 1, we may also write for high
Pr values:

b = uzfd* P

For high Prandtl numbers, therefore, b 1s approximately equal to the
thickness ng of the heat conducting layer.

equation (44) (if we set % = 0.4) ng = 261. This position of n should

lie very near the wall, that is, yz/f should be small since the univer-
sal well friction law here applied holds only under this assumption. If,
in order to setisfy this condition, we set yz/f = 0.05, then there is

obtained 17, = 5220. To this value of m, corresponds U/u* = 27.8
and the Reynolds number Re = 2qr¢mU/u* = 2.5x10°. Furthermore,

P2 = uZ/U = 0.70. For Pr = 0.00L the corresponding values are
ugfu® = 25 (compare table 4), ng = 2510, 7, = 50,200, U/u¥* = 33.5,
Re = 3x10%, and g = 0.75.
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If we substitute the approximation formula b ='u2/u* in equetion
(31), the denominator of this equation becomes

1+ (Prg - Log + €

where @5 = uz/U denotes the dimensionless velocity at the outer edge-.

of the heat conducting layer. By comparing this expréssion with the
denominator of the Prandtl equation 1 + (Pr - l)q;a (eq. (41)) where ¢,

is the velocity at the boundary of the laminasr layer, the followlng re-
sutt is obtained:

The new theory differs from the classical theory, among other re-
spects, in the fact that in place of the velocity ¢y at the boundary

of the leminar layer there enters a velocity bu¥*/U, which is epproxi-
mately equal to the velocity ¢ at the boundary of the predominantly

heat conducting layer at the wall. -

Whereas the veloclty ¢g of the classical theory represents a
purely hydrodynamic magnitude, the veloecity. bu*/U » ¢, depends also on

the Prandtl number, which is contained in the magnitude b = up/u®. The

magnitude b 1s, however, determined exclusively through the Prandtl num-

ber {that is, is independent of the Re number), only if the Re number is
g0 large that the heat conducting leyer lies In the immediate neighbor-
hood of the wall, where the universal friction law holds (i.e., all mag-
nitudes depend only on ﬂ)- Thils condition, which will be numerically
formulated below, is to be observed particularly for smell Praendtl
nunbers.

Since at small Prandtl numbers and high Re numbers Pr = l/inz
(see footnote 15), we can under these conditions for the factor Pr e

appesring in equation (33) write

L - (48)

Pr g, = ;527;

If we now assume that the universal friction law still holds with suf-
ficient accuracy in the region and in the neighborhood of yp, < 0.05 r,

there tollows from equation (48) with % = 0.4:

Pr n. > 50 ] S (49)

If this condition 1s satisfied, the given b-values may be substituted

in equation (31). The factor bu®/U = ¢, for such small Pr (or such
large b) then also remains always smeller than 1.

T8¢
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If in equation (48) 7, is further replaced by Re by means of the
identity relation Re = qu¢mU/u*, there is obtained as condition for
Pr Re g '

Pr Re > 100 q,U/u*®

Using the numerical values in footnote 16, there is then obtained 5
Pr Re > 2500 (50)

Accordingly, the univzrsal b may be applied 1f, for gxample, for
Pr = 0.1; Re > 2.5x10%, or for .Pr = 0.0l1; Re > 2.5x10".

5. COMPARISON OF THEORY WITH EMPIRICAL RESULTS

A good part of the extensive experimental material om- turbulent
heat transfer has been evalluated by the Prandtl formule (41). It was
immediately recognized that classical theory does not correctly repre-
sent the experimental facts, in that the factor ¢a(which properly should

be a function only of the Re number) is also dependent on the Prandtl
number. It was therefore considered as an essential object of experi-
mental investigation to determine the dependence of the magnitude Pg,

on the paremeters Pr and Re from tests.

The results of investigations in this directlon by various authors,
in connection with turbulent pipe flow, have recently been evaluated by
B. Koch (ref. 8). Almost sll the authors make use of the original

(Prendtl) formuletion that ¢, is proportionsl to Re™1:8. M. ten Bosch

(ref. 1), however, assumes @y = Re~0-1. This formulation is undoubtedly
the better one, because according to the very careful tests of J.
Nikuradse (ref. 10} u*/U can be represented for the usual region of
Reynolds numbers by the equation

-0.1

u*/U = 0.125 Re (10* < Re < 10%) (51)

From the series of empirical formules, therefore, those of ten Bosch
will be chosen and used for checking the theory.

The formula of this author is [NACA note: See appendix.)
¢, = B Pr-0:185g¢-0.1  (ten Bosch, empirical) (52)

where B 1is a coefficient which has the value 1.40 for the heating of
the fluid and the value 1.12 for the cooling of the fluid. This relation
is supported by numerous test results of various investigators, in par-
ticular by the very careful measurements of G. Rohonczi (ref. 18).
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If we set @ = bu*/U in equatiodr (52), there is obtained from
equations (51) and (52) an empirical formula for b independent of Re:

b =8B Pr-0:18  (ten Bos¢h, empirical)(S3)

Since ten Bosch developed equation (52) from measurements at medium and
high Prandtl numbers, formula (53) derived from equation (52) must be: .
compared with the theoretical b-values of the medium and large Prandtl
numbers. For thils purpose the b-values obtalned through graphical inte-
gration from table 4 will be represented by an approximation formula.
This formula is '

T8¢

b =10 Pr-0-30 (1 < Pr < 200) (54)

A comparison of equations (53) and (54) shows that for Prandtl num-
bers in.the nelghborhood of 1 the theoretical b satisfactorily agrees
with the experimentel b (the mean value of the factor B, which lies
between 1.12 and 1.40, is 1.26). For high Prandtl numbers, however, the
theoretical b-values are too small (for Pr = 100, for example, by the
factor 0.6), that is, the theoretical heat-transfer coefficients are too
high.

This evident deficiency of the theory for high Prandtl numbers -
for which the heat conducting layer lies entirely within the viscous
wall layer, is only to be explained by the circumstance that the ex-
pression of equation (37)(which for the neighborhood of the wall goes .
over into eq. (37b)), used for the computation of b, gives too high ex-
change values for the predominantly viscous region. For this reason,
as already stated in paragraph 3, section (b), for the immediate neigh-
borhood of the wall (n < 6) there was set up expression (39), which
glves considerably smeller values of AT/p (fig. 2).

If these corrected values of A;/u are substituted in equation

(30e) for the region 1 < 6, there are obtained the corrected b-values,
which are denoted by b, and which are likewlse given in table 4 and

figure 11. As is shown by figure 11, the dotted by curve lies above

the b-curve. At high Prandtl numbers by 18 considerably larger than
b, while the difference at medium Prandtl numbers is insignificant (for
Pr < 0.1 we have practically by = b).

For the region of medium and high Prandtl numbers the previously
given by values may be represented by the following approximatlion

formule:

by = 9.12 Pr-0.20 (1 < Pr < 200) (55)
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This formule agrees approximately with the empirical formula (53). At
any rate, the differences between equations (53) and (55) lie within the
limits of the error range of the experimental results.

A further correction of the assumed expression for the values of
AT/u near the wall at the present time would also have no significance

since the check of any theoreticael fine details, in view of the uncer-
tainty as to Aq/AT and the uncertainties of the measured values, is

quite impossible. In addition, it is to be borne in mind that the mag-
nitude b (eq. (30)) is influenced by the temperature dependence of the
Prandtl number (and, therefore, accurately spesking, is no universal con-
stant)ls, and that this influence must be given theoreticel treatment.

The assumption by ten Bosch and other investigators thet the factor
B depends on the temperature gradient, in view of the structure of for-
mula (30), appears entirely plausible. Whether the problem, however,
can be so simplified that two B-values are sufficient (for heating and
cooling the fluid, respectively) is undecided.

6. SUMMARY

1. Under the assumption of a uniformly smooth wall, general formu-
las are derived for the temperature distribution in turbulent friction
layers and for the turbulent heat transfer. In these formulas the fol-
lowing problematical magnitudes occur: +the ratio of the turbulent to
the viscous friction (A;/u) and the ratio of the exchange magnitudes for

the heat and for the momentum (Aq/At).

2. In order to solwve practical problems, concrete expressions are
required for Aq/Adr and for AT/u. As regerds the ratio of the exchange

magnitudes, it was found from available tests that Aq/Ar in boundary

layers is lowered as compared with its value of about 2 in free turbu-
lence. It 1s then assumed that Aq/A¢ with decreasing distance from

the wall decreases from the value of about 2 at the outer edge of the _
boundary layer to the value 1 in the lmmediate nelghborhood of the wall.

3. For the ratio of the friction coefficients A1/p in the various

regions of the boundary layer, formulas are avaeileble which the author
has developed in previous work on flow investigations (egs. (35) and
(37)). These formulas express the fact that the transition from the
predominantly turbulent friction in the nucleus of the boundary layer to

16The given b-values hold, therefore, only for very small tempera-
ture differences. T T __
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" the predominantly viscous friction 1n the immediate neighborhood of the
wall takes place continuously.

With the ald of these formulas for Ag/u, the temperature variation
9 over the radius of a pipe (figs. 3 and 4), the corresponding distri-
bution of the heat flow q/qo (fig. 5), and the Nusselt number (fig. 6)

are computed by an already tested approximation method for a wide range
of Prandtl numbers.

4. The contlnuous transition from the predominently turbulent to
the predominantly molecular friction corresponds to a simlilar continu-~
ous transition from the predominantly turbulent to the predominantly
molecular heat transfer in the neighborhood of the wall. The dimension-
less thickness 1o of the wall layer with predominant heat conduction

agrees, however, with the thickness 1 of the predominently viscous

wall layer only for the Prandtl number Pr = 1. For high Prandtl num-
bers the heat conducting layer lies deeply wlthin the approximately vis-
cous layer; whereas the heat conducting layer for very small Prandtl
numbers may extend over the entire range of the boundary layer.

5. A computation of the heat transfer at the wall according to a
general formula {eq. (31)) is possible without preliminery computation
of the temperature profile if the heat conducting layer is restricted to
the region near the wall 1In which the universal wall friction law holds.
This assumption is approximaetely satisfied if the product of the Prandtl
number by the Reynolds number is greater than about 2500.

6. In the general formula for turbulent heat transfer (eq. (31)),
there occurs a factor bu*/U = @o which corresponds to the factor ¢,

of the Prandtl formula (41). Whereas the magnitude ¢y of the classi-
cal theory denotes the dimensionless velocity at the boundary of the
fletitious "laminer layer® and thus represents a pure flow magnitude,
9, 1is approximately equal to the velocity at the boundary of the heat

conductlon layer; ¢ 1s not a purely hydrodynamic qu@htity, since the
factor b depends on the Prandtl number. -

For very large Prandtl numbers the magnitude b is approximately
equal to the dimensionless thickness np of the predominaently heat con-

ducting layer.

7. The magnitude b which 1s Independent of the Re number, de-
pends on the heat-flow distribution ¢p/q. Thie distribution (fig. 10)

vas computed using the expression (37) for AT/u. The b-~values thus
obtained (taeble 4 and fig. 11) agree for medium Pr numbers with the

TL8E
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experimentally obtalned values as is shown by the comparison with an
empirical formule of ten Bosch. For high Prandtl numbers, however, too
small b-values, that is, too large heat-transfer coefficients,_are_ob—
tained by computation. From this it follows that expression (37) gives
too high values of Ar/u for small distances from the wall (7 < 6).

For the region n < 6 the values of AF/“ were therefore corrected

in the direction of a still stronger decreese of the turbulent exchange
at the wall (eq. (39)). The corrected values thus obtained by (teble

4 and fig. 11) also for high Prandtl numbers, are quite well represented
by the empirical formulsa.

SYMBOLS
A turbulent exchenge magnitude, kg/m h
du
Ay for momentum (Tt = Ap E;)

Aq for heat (qt = cpAq-g§>

B factor used by M. ten Bosch

b factor used by H. Reichardt

cp specific heat at constant pressure, kcal/kg (°C)

d diameter, m '

il flow cross section, m?

k = arp/egT - 1

q heat flux (qy &t the wall; g molecular heat flow),
kcal/mzh -

r radius of pipe or channel (flat sides) or thickness of
the friection lasyer, m

T {absolute) temperature, °x

T - To temperature difference between flowing medlum and wall

(@ meximum temperature difference), °C
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u
Umn
u* = ~fTo/e0
u, u', v!
X, ¥
Z=r -y
Re = umd/b
Pr =y c§/X
Prg
Pr¥* = Aq . pr
Ar
qu
Nur = m
* )
A" F —
o.c U@
0] po
-
0
¢
n = yu¥/
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meximum value of the u-velocity, m/h
flow velocity, m/h

u~-velocity averaged over flow cross section, m/h
shear stress velocity, m/h

flow velocities {(u or u mean velocity; u' fluctua-
ting veloclty parallel to the wall; v' fluctuating
velocity at right engles to wall), m/h

coordinates (x parallel to wall; y distance from
wall),

distance from pipe axls or from middle plane of
channel, m

Reynolds number ;

Prandtl nunber

Prandtl number referred to a sultable mean temperature
of boundary layer near wall

generalized Prandtl number

Nusselt number

generalized heat-transfer coefficient

coefficient

resistance coefficient

dimensionless distance from wall (nl thickness of
predominantly viscous wall layer; uPs thickness of
predominantly heating wall layer; n,. = ru*/v)

T.8¢
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<

= (T - To)ﬁD

v = p/p

o

Subscripts:
0

i
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i3 maximum temperature difference, ©C

dimensionless temperature difference (Qm referred to
mesn temperature, §,, to mean flow temperature)

constant of universal wall friction law
thermal conductivity, kéal/m hC
viscosity, kg/m h

kinematic viscosity, kg/h h

density of flow medium, kg/m3

du
shear stress (10 et wall; 7y = W Fy moleculer shear
stress; T4 turbulent shear stress), kp/m?

o = u/U, ®;p = um/U

wall

boundary of predominantly viscous layer
boundary of predominantly heat conducting layer
boundary of laminar layer

boundary layer {near the wall)
corrected magnitude

molecular transfer

mean value

reference length

pipe axis

heat flow

turbulent transfer

flow medium

momentum flow



34

l'

2.

10.

11.

1z.

13.

14.

NACA T™ 1408

REFERENCES
ten Bosch, M.: Die Warmelbertiagung.  Berlin, 195@.

Deissler, Robert G.: Analytical and Experimental Investigation of
Adisbatic Turbulent Flow in Smooth Tubes. NACA TN 2138, 1850.

. Eliss, F.: Die Warmelbertragung einer geheizten Platte an str®mende

Luft. bh. Aachen H. 9, Aachen, 1930. (Available in English trans-
lation as NACA T™ 614.)

. Elser, K.: Reibungstemperaturfelder in turbulenten Grenzchichten.

Mitt. Inst. Thermodyn. Verbrennungsmotorenbau ETH Zurich H. 8,
Zirich, 1949.

. Fage, A., and Falkner, V. M.: The Transport of Vorticity and Heat

Through Fluids in Turbulent Motion. (Appendix by G. I. Taylor.)
Proc. Roy. Soc. (London), sec. A, vol. 135, 1932, pp. 685-705.

. Graetz, L.: Ueber die Warmelelstungsféhigkeit von Flussigkeiten.

Ann. Phys., vol. 18, 1883, pp. 79-94; vol. 25, 1885, pp. 337-357.

von Karmén, Th.: The Analogy between Fluid Friction and Heat Trens-
fer. Trans. A.S.M.E., vol. 61, no. 8, Nov. 1939, pp. 705-710.

Koch, B.: Turbulenter Warmesustausch im Rohr. Arch. ges. Warme-
teCh.n; l) 1950, PP- 2"80

. Lorenz, H., and Friedrichs: Beltreg zum Problem des Wﬁrmeuberganges.

Zs. tech. Phys., 15, 1934, pp. 376-377.

Nikuradse, J.: @esetzmissigkeiten der turbulenten Stromungen in
glatten Rohren. Forsch. 356, Berlin, 1932. (Available in English
translation as Project Squid Rep. ™ - Pur - 11, Aug. 1949.)

Musselt, W.: Die Abh@ingigkeit der Warmelbergangzahl von der Rohr-
lédnge. Zs. Ver. dt. Ing., 54, 1910, pp. 1154-1158.

Prandtl, L.: Eine Beziehung zwischen Warmeaustausch und Strom-
ungswiderstand der Flissigkeiten. Phys. Zs., 11, 1910,
pp. 1072-1078. _

Prandtl, L.: Bemerkungen iber den Wﬁrmeﬁbergang im Rohr. Phys. Zs.,
29, 1928, pp. 487-489. .

Reichardt, H.: Die Wirmelibergang in turbulenten Reibungsschichten.
Z. a. M. M., 20, 1940, pp. 297-328. (Aveilable in English trans-
lation as NACA TM 1047.)



NACA ™ 1408 35

15. Reichardt, H.: Der Einfluss der wandnshen Stromung auf den turbu-
lenten Warmelibergang. Mitt. Max-Planck-Tnst. StrSmungsforschg.
H. 3, Gottingen, 1950. - :

16. Reichardt, H.: Vollstdndige Darstellﬁng der turbulenten Geschwind- '
igkeitsverteilung in glatten Leitungen. Z. a. M. M., 31, 1951,
Pp. 208-219.

17. Reynolds, O.: Proc. 1lit. philos, Soc. Manchester, 14, 1874/75.
On the Magnitude and Effect of the Heating Surface of Steam !
Boilers. Arch. ges. Wdrmetechn., 1, 1950, pp. 120-122.

18. Rohoneczi, G.: Druckabfall und Wérmeﬁbergang bel turbulenter Stramung
in glatten Rohren mit Bertcksichtigung der nichtisgﬁhermen Stromung .
Ber. Nr. 115, der Eidg. Materislprufungsanstalt, Zurich, 1939.

19. Taylor, G. I.: Eddy Motion in the Atmosphere. Phil. Trans. Roy.
Soc. (London), sec. A, 215, 1915, pp. 1-33.

20. Lyon, R. N.: Liquid Metdl Heat Transfer Coefficients. Chem. Eng.
Prog., 47, 1951, pp. 75-79. . .

Translated by S. Reiss
National Advisory Committee
for Aeronautics



36 NACA T 1408

APPENDIX
DISCUSSION CONCERNING A CORRECTION TO THE TEXT

The following extracts from an exchange of letters between Dr.
Grigull and Dr. Relchardt are included in this translation at the request
of Dr. Reichardt.l?

Dr. Grigull to Dr. Relchardt, Msrch 4, 1952:

I recently received your latest paper (Arch. ges. Wirmetechn. 2
(1951) 129/42) which I read with grest interest. I noted, however, that
the empirical values of ten Bosch which were used for 'comparison refer
to the ratio ugfun (eq. (52)), whereas you refer the Prandtl equation
(41) to U. The values of.ten Bosch are, therefore, larger by approxi-
mately the factor 1.2. If these values are reduced, the computed b~
values will be found to lle between your original and the corrected by-

values (table 4). This means that your expression for the exchange
values 18 more correct than appears from your comparison.

I would appreciate it if you check my statements and let me know
whether they are correct. I em particularly interested in thls guestion,
because I am preparing a new edltion of my text book (Gréber-Erk-Grigull,
Grundgesetze der Wirmelibertragung, 3rd revised edition, Springer-Verlag
1955) and would like to consider your theory in somewhat more detail
gince I consider it very suitgble for arriving et a generally valid equa-
tion for turbulent heat transfer.

Dr. Reichardt to Dr. Grigull, Msrch 13, 1952:

You are quite right in your criticism. I have overlooked the fact
that the ¢ of ten Bosch refers to the mean velocity Wy s instead of

the meximum velocity U which T used. In my equation (53) there must,
therefore, appear the ¢, term. Thereby the deviation between the
computed b-values and the experimental b-values at high Prandtl numbers
becomes smaller.

17 personal correspondence with T. M. Hallmen, Lewls Flight
Propulsion Laboratory, dated June 27, 1955.
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TABLE 1
g A /u (A /u)k
0.2 8.8x10~6 ox10~8
.4 7.1x107° 3x10” "
.6 2.4x107% | 7 2.1x107®
.8 5.6x10 " 8.8%10 °
1 .001 2.7x10™°
2 .009 8.6x107%
3 .030 6.5%10°
4.5 .093 4.9x1072
6 .209 .193
9 .630 .630
11 1.05 1.05
12 1.30 1.30
15 2.14 2.14
| 18 3.12 3.12
21 4.19 4.19
24 5.31 5.31
36 10.0 10.0
48 14.8 14.8
67 22.8 22.8
100 35.6 35.6

37
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TABLE 2

[Re = 3x10%; n,. = 800]

NACA TM 1408

Pr Nudy, du Nu log Nu
Leminar 2.18 0.578 3.77 0.576
flow
0 2.50 .480 5.22 .717
.01 3.74 .515 7.28 .861
(4.11) (.515) (7.97) (.902)
.1 12.8 .847 19.7 1.30
(15.2) (.647) (23.5) (1.36)
1 63.2 .807 78.3 1.89
(69.0) (.807) (85.5) (1.93)
10 226 .950 238 2.38
(233) (.950) (246) (2.39)
100 593 .989 600 2.78
(595) (.989) (601) (2.78)
1000 1291 1.000 1291 3.11
(1327) (1.000) (1327) (3.12)
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TABLE 3
Re Nud,, 4 Nu
3x10% 2.51 0.496 5.05
x10* | 2.52 .480 | 5.24
3x10° | 2.55 470 | 5.43
3x10® | 2.s8 468 | 5.50
TABLE 4
Pr 0.001 0.01 0.1 1 10 100 1000
12 2510 261 35.6 10.8 4.80 2.18 1.05
N2, 2510 261 35.6 10.8 5.17 3.24 2.20
u, [u* 25.0 19.4 14.0 8.84 4.50 2.07 1.00
(up /u*)x 25.0 19.4 | 14.0 8.81 | 5.05 | 3.25 | 2.06
b 25.1 19.5 14.1 9.10 5.04 2.49 1.18
by 25.1 19.5 14.1 9.19 5.56 3.47 2.20
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Figure 1. - Verlation of dimensionless exchange
megnitude Ax/un+t with distance from wall
y/r =1 - z/r.

Tlee



NACA TM 1408 41

16 T )r . 8
l Y ,‘,.,q,;x;»é-ﬁ""’
i . . 0 il
12 , #&;L o 6
Faly
4 /
u (- A.
: E* 8 AN /# A 4 -;,.I
o U ——Cc;rrec'l::l.on(J ~ n5)
o I A. 4 K
. Y x Nikuradse
/" \ /Y ° Reichardt |
i | { ‘//“-r /
0 i 20 n 30 40 0

Figure 2. - Ratio of turbulence to viscous
friction At/p and dimensionless velocity
u/u* as function of the dimensionless
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Figure 4. - Tempereture distributions

3 of the turbulent flow in a pipe
over the dimensionless distance from )

the wall y/r. Re and Pr as in
figure 3.
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Figure 5. - Distributions of dimension-
less heat flux q/qg, and shear stress
v/t in a tube over the distance from

thewall y/r (for Re,3x10%).



KACA TM 1408

4%
»/ﬁ: -3
P _ ,
//V i =1
7 =
L 0
y/ Q
- ~
I/ -
[ = {
1T T T T T<leminer flow
3 2 0 1 2 3 0
log Pr

Figure 8. -~ The Nusselt mumber as a function of the
Prandtl number for Re = 3x10%. With decreasing

Pr number, Nu approaches the limiting value 5.22
(5011d horizonteal).

For laminar flow Nu = 3.77
(dotted horizontal).

10

9 ——F T

|~

L]
8 o

/ — Circuler croes

section
—— Plane cross

section

J

5 10¢ 2 5 105 2 5 106

Re

Figure 7. - Ratio ¢ of mesan velocity
Uy, Yo meximum velocity U as a func-
tion of Re number.



44 NACA TM 1408

15
! T ] I
N~ —— Pipe flow
\\\\\ —~— Plane chamnel flow
N
Re \ [~ Re
¢ o \N T 104
05 Bt SF—o | T ax10*
s eesel

0 72 2 5 10 20 50 100 200
Pr

Figure 8. - Coefficient & as a function of
Prandtl number.

=

[ ] I
Re=10%, 3x10%, 10°, _ZLOG
f;

L
AT

— ] N
| &7 Re=10%, mx10%, 10°, 10°

\

1

\\
\
0

\

A

—

2 5 10 P 20 50 100 200

Figure 9. - Dimensionless meen flow temperature éu &g 8
function of the Prandtl number.

A2



3871 |

NACA TM 1408

001

—_— ]

NS

10 15 20 _ 25 30 35 40 45

Figure 10. - Ratio of molecular heat flow qp to total
flow g as a function of dimensionless velocity u/u¥
for various Prandtl numbers.

NACA - Langley Field, Va.

25

\\\
<
&
S
@ Bg"\:
3 - - 2 3
log Pr

Figure 11. - Dimensionless velocity ug/u*
at the boundary N, of the predomimantly
heat conducting 1ayer and magnitude

b .é.? Sm QM o Y2 g5 functions of
-x- o*

the logarithm of the Pr mumber.

45



